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Abstract

The plateau–insulator (PI) transition in the quantum Hall regime, in remarkable contrast to the plateau–plateau (PP) transition, exhibits very

special features that enable one for the first time to disentwine the quantum critical aspects of the electron gas (scaling functions, critical indices)

from the sample dependent effects of macroscopic inhomogeneities (contact misalignments, density gradients). In this communication we report

new experimental data taken from the PI transition of a low-mobility InGaAs/InP heterostructure and propose universal scaling functions for the

transport coefficients. Our new findings elucidate fundamental theoretical aspects of quantum criticality that have so far remained inaccessible.
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1. Introduction

Following the pioneering experiments on quantum

criticality in the quantum Hall regime by Wei et al. [1],

the primary focus of subsequent work [2] has been on the

critical exponent kz0.42 that characterizes the width

n0(T)fTk of the plateau transitions as the temperature T

approaches absolute zero [3]. However, even currently the

exact meaning of k and the very nature of the quantum Hall

plateau transition remain a major topic of research. For

example, one of the main difficulties in probing quantum

criticality in the quantum Hall regime at finite T is that the

experiment must be performed on samples where the

dominant scattering mechanism is provided by short-ranged

potential fluctuations [4]. Whereas, the original samples

used by Wei et al. suffered of inhomogeneity effects, which

have in general not been understood [5], the majority of

samples used by many others [2,6] have mainly complicated
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the experiment due to inappropriate choices of the impurity

characteristics [4].

In recent years, however, something remarkably universal

has emerged in the actual shape of the magneto resistance

data taken from the plateau–insulator (PI) transition of the

lowest Landau level [6,7], that has not been observed in

the original experiments of Wei et al. that were conducted on

the plateau–plateau (PP) transitions of the higher Landau

levels [1]. Whereas, the longitudinal resistance data associ-

ated with the PI transition generally follow an exponential

law with varying magnetic field B [6,7], for a certain class of

samples the Hall resistance has been found to be (almost)

quantized throughout this transition [6]. In this communi-

cation we propose universal scaling functions for the

conductance parameters that are based on new experimental

data on the PI transition taken from a low-mobility InP/

InGaAs heterostructure. These scaling functions encompass

the universality statement made on the critical index k [3].

However, unlike the numerical exponent values which are

difficult to establish experimentally, we shall argue that the

proposed scaling functions actually provide a more reliable

and profound characterization of the quantum phase transition

since they directly relate not only to the experiments

conducted at finite T but also to the fundamental topological

features of the underlying microscopic theory.
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Fig. 1. Data for rxx and jrxyjwith varying B and for opposite field directions, taken

from an InGaAs/InP heterojunction (nZ2.2!1011 cmK2, mZ16,000 cm2/V s).

The letters a,b,., f indicate TZ0.38, 0.65, 1.2, 2.1, 2.9 and 4.2 K, respectively.

Inset: 1/n0 vs T for the PI transition. The closed and open symbols refer to opposite

directions of the B field.
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2. Particle–hole symmetry

In magneto transport experiments one is generally faced

with the long-standing problem of how to extract a local

resistivity tensor rij from the measured macroscopic resist-

ances Rij. The experiment is usually conducted on samples

prepared in the Hall bar geometry. Taking the x-direction as the

direction of the electrical current then the resistivity

components rxx and rxy are related to the measured resistances

Rxx and Rxy according to:

Rxx Z
L

W
rxx Rxy Z rxy: (1)

Here, L/W is a geometrical factor with L denoting the

‘length’ and W the ‘width’ of the Hall bar, respectively. For a

variety of reasons, however, the experiments generally do not

provide unique and well-defined values of rxx and rxy [5]. In

what follows we shall make use of the very special features of

the PI transition that permit the observation of universal scaling

functions that until now have been inaccessible. The solution

lies—for the major part—in recognizing that the problem

exhibits a fundamental symmetry [3,8,9] which we call

particle–hole symmetry. To elucidate what it means we first

recall the principles of scaling. Denoting the longitudinal and

Hall resistivities of an ideal homogeneous sample by r0 and rH,

respectively, then at sufficiently low T, these quantities with

varying B and T become functions of a single scaling variable X

only (we work in units of h/e2)

r0ðB; TÞ Z r0ðXÞ; rHðB;TÞ Z rHðXÞ; (2)

where

X Z
ðnKncÞ

n0ðTÞ
; n0ðTÞ Z

T

T0

� �k

: (3)

Here, nZn0/nB equals the filling fraction of the Landau band

with ncz1/2 denoting the critical value, n0 is the electron

density, nBZeB/hc the density of the fully occupied Landau

level and T0 stands for an arbitrary T scale. The conductivity

components s0 and sH can by obtained as usual, by inverting

the resistivity tensor:

s0 Z
r0ðXÞ

r2
0ðXÞCr2

HðXÞ
; sH Z

rHðXÞ

r2
0ðXÞCr2

HðXÞ
: (4)

Particle–hole symmetry of the PI transition can now be

expressed as follows:

s0ðXÞ Z s0ðKXÞ; sHðXÞ Z 1KsHðKXÞ: (5)

As we shall see next, it is specifically this relation that

enables us to disentwine the intrinsic transport properties of the

PI transition from the sample dependent effects of macroscopic

inhomogeneities.

3. The experiment

Our InP/InGaAs sample and set-up of the experiment

conducted at high B are identical to those of van Schaijk et al.

[7] in their studies of scaling of the PI transition. However, the
new insights into the important role of sample inhomogeneities

primarily emerge from the effects of a change in the polarity of

the B field [10] that have previously not been investigated [7].

Fig. 1 shows the results for sweeps in both directions of the

B field for different values of T. Upon reversing the direction of

B at constant T we find that the rxx data for the PI transition

remain unchanged. The rxy data, however, are strongly affected

and the results for opposite B and low T (T%1.2 K) display a

remarkable symmetry about the plateau value jrxyjZh/e2. This

result is clearly one of the strongest experimental features of

the PI transition since it has previously been observed on

different samples that do not provide access to scaling [6]. To

understand the meaning of our results we split the rxy data,

at constant T, in different pieces

rxyðBÞ Z rHðBÞCrs
xyðBÞ; (6)

where rHðBÞZKrHðKBÞ and rs
xyðBÞZrs

xyðKBÞ. The relatively

large component rs
xy clearly indicates the effect of sample

inhomogeneities, which may in principle be arbitrary compli-

cated. In a simplest approach to the problem one can associate a

geometrical significance with rs
xy due to a misalignment of the

sample contacts. To represent the effect we replace the

geometry of Hall bar by that of a parallelogram obtained by

rotating the y-axis of the L!W rectangular system over a small

angle q. Under these circumstances it is convenient to express

the experimental resistivity tensor rij in terms of the intrinsic

components r0 and rH as follows

rij Z Sijr0ðXÞC3ijrHðXÞ: (7)

Here, 3ij is the usual antisymmetric tensor and the quantity Sij,

which we name the stretch tensor is given by
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Sij Z

rc

cos q
tan q

Ktan q
rK1

c

cos q

2
66664

3
77775: (8)

We have introduced the symbol rcz1 to indicate the

experimental uncertainties in the factor L/W. When written in

this manner the problem of contact misalignment resembles in

many ways that of an anisotropic magneto resistance tensor.

Eqs. (7) and (8) are consistent with the observed symmetries

under B/KB:

rxx Z
rc

cos q
r0ðXÞ; r

s
xy Z tan qr0ðXÞ: (9)

Moreover, since there are no geometrical factors associated

with the Hall resistance we make use of rHZ1 at low T and

immediately deduce the following important statement made

by particle–hole symmetry (Eq. (5))

r0ðXÞ Z rK1
0 ðKXÞ: (10)

In the remainder of this communication we show that Eqs.

(7)–(10) set the stage for a detailed analysis and understanding

of the transport data. This analysis can be extended in several

ways, including the effects of inhomogeneity in the electron

density as well as important self-consistency checks. In this

respect the PI transition is distinctly different from the PP

transitions where the steps in rH complicate the problem

considerably [5].
4. The rxx data

These data with varying B display a well-defined fixed

point at BcZ17.2 T (ncZ0.55) where the various isotherms

intersect (Fig. 1). This observation can be used to accurately

determine the scaling variable X [7]. The data for 1/n0(T) vs T

are plotted on a log–log scale in the inset of Fig. 1 from which

one extracts the critical exponent value kZ0.57G0.02 as well

as T0Z200G25 K, which are the same as those found earlier

[7]. The rxx data are, furthermore, consistent with Eqs. (7) and

(8) and particle–hole symmetry (Eq. (10)) and the result for

r0(X) for a large range in X can be expressed as follows

r0ðXÞ Z eKXKOðX3Þ: (11)

The term OðX3Þ in the exponential is a small correction in

the regime of actual interest jXj(1 and a best estimate gives

0.002X3. The amplitude in Eq. (7) has been determined to be

rc/cos qZ1.0G0.1 where the large error reflects the

experimental difficulties in measuring the geometrical factor

L/W of the Hall bar.
Fig. 2. (a) Collapse of the rH data (see inset b) onto a single curve hZ
ðrH K1Þ=r0ð ~XÞ vs T for different values of DnZnKnc. Here the r0ð ~XÞ
has been taken from the rs

xy data, Eq. (13). Solid line: (T/T1)ys vs T with ysZ
2.43G0.08 and T1Z9.2G0.3 K. (b) Data for rHK1 vs T for different values

of Dn. (c) Data for (1/6)[3xnc/n0(T)]2 vs T.
5. The rs
xy data

The main features of the rs
xy data are described by Eq. (9)

with tan qz0.1 and r0(X) given by Eq. (11). The main

difference, however, is the fixed point value nc which is slightly

different for the rs
xy and rxx components. Since the
measurements were conducted on different parts of the sample,

the different values of nc can be attributed to small gradients in

the electron density. To justify this claim we have assumed that

the resistivity components are given by r0(X)ZeKX, rHZ1 but

with the filling fraction n replaced by a spatially varying

quantity n(x,y)ZnCnx(x)Cny(y) in the definition of X. This

problem of spatially varying transport coefficients can be

solved exactly. The final results can be written precisely in the

form of Eq. (8) but with the stretch tensor now given by [5,10]

Sij Z

rc

cos q
tan q exp

3xn

n0ðTÞ

0
@

1
A

Ktan q exp
3yn

n0ðTÞ

0
@

1
A rK1

c

cos q

2
6666664

3
7777775
: (12)

Here, 3xZGnxL/2n and 3yZGnyW/2n are fixed quantities

representing the relative uncertainties in the electron density in

the x and y directions, respectively. The main point of this

exercise is to demonstrate that the density gradients do not

affect the critical behavior of the PI transition. For example,

Eq. (12) implies that

rs
xyðB;TÞ Z tan q e3xn=n0ðTÞ r0ðXÞ Z tan qr0ð ~XÞ; (13)

where ~X is the same as in Eq. (3) but with ~nc Znc=ð1C3xÞ and
~T0ZT0ð1C3xÞ

1=k substituted for nc and T0, respectively. From

the difference nc K ~nc we extract 3xz0.02. In Fig. 2(c) we plot

the quantity (1/6)[3xnc/n0(T)]2 vs T. The results are consistent

with the general condition (1/6)[3x,yn/n0(T)]2/1 under which

Eq. (12) is valid [5,10].
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6. Corrections to scaling

To complete the analysis of the resistivity tensor, the small

corrections to exact quantization rHZ1 at higher T (not plotted

in Fig. 1) are now addressed. The following expression

(Fig. 2(a) and (b))

rH Z 1 ChðTÞr0ð ~XÞ; hðTÞ Z
T

T1

� �ys

(14)

with ysZ2.43G0.08 and T1Z9.2G0.3 K accurately describes

the rH data for T!4 K. Here the quantity r0ð ~XÞ has the same

meaning as in Eq. (13) and is obviously replaced by r0(X) in the

final answer for rH.

At this stage several remarks are in order. Notice first that

the correction term h(T)r0(X) in Eq. (14) is precisely in

accordance with the general expectations on the basis of

critical phenomena theory. For example, under ordinary

quantum Hall conditions (i.e. large values of X) Eq. (14)

indicates that the corrections to exact quantization are

exponential in T, which means that the low energy dynamics

of the electron gas has a mass gap, as expected. At the quantum

critical point XZ0, however, the corrections render algebraic

in T indicating that the excitations are now massless. These

various different statements become especially meaningful if

one recognizes that the scaling corrections in Eq. (14) are

actually obtained as a corollary of the renormalization theory

of the quantum Hall effect [3,8,9]. To see this we express the

conductivity components in terms of the independent scaling

variables h(T) and X. Working to linear order in h(T) we obtain

the following expressions

s0 Z
r0

r2
0 C1 C2hr0

; sH Z
1 Chr0

r2
0 C1 C2hr0

(15)

which generalize the statement of particle–hole symmetry

(Eq. (5)). Moreover, when plotted as T-driven flow lines in
Fig. 3. Experimental T-driven flow lines with 0.01!T!10 K for different

values of n near nc, according to Eq. (15).
the s0, sH conductivity plane (Fig. 3) we observe all the

distinctly different and much sought after features of scaling

that previously remained concealed in the experiments on the

PP transitions [1].
7. Conclusions

For the first time universal scaling functions have been

extracted from the experimental data. The most significant

finding is Eq. (15), which has a remarkably general

significance for a range of completely different physical

systems. From the experimental point of view, the main

differences are found in the expression for n0(T), which

strongly depends on the type of disorder in the sample, given

the range of experimental T. For example, in the case of

smoothly varying potential fluctuations one finds the

semiclassical result n0(T)ZaCbT [6] which gives no

indication of the universal algebraic law of Eq. (3) which

is expected at a much lower T only [4]. The exponent value

kZ0.57 taken from the PI transition is slightly different from

the original results on the PP transition [1] which are

complicated due to inhomogeneity effects [5]. From the

theoretical side, Eq. (15) has interesting consequences for

composite fermion theory [11] as well as the topological

concept of an instanton vacuum [9], notably all the basic

aspects of the quantum Hall effect are generically displayed

by the latter [9,12]. Furthermore, our scaling results are very

similar to those recently obtained from certain exactly

solvable models of the q term [12]. Eq. (15), therefore,

clearly delineates the highly non-trivial and super universal

consequences of topological concepts in quantum field theory

that unify the robust quantization of the Hall conductance and

the quantum critical behavior of the electron gas that is

generally associated with the plateau transitions.

Upon completion of this work we learnt that detailed

studies on k are being performed by Li et al. [14]. These

experiments seem to favor kz0.42 and possibly indicate that

our slightly different value is a result of clustering effects in

the alloy scattering. It is important to stress, however, that

experimental k values cannot be used for the purpose

of justifying Fermi liquid ideas [13] since the problem

with long ranged (Coulomb) interactions is known to be in

a different universality class, involving fundamentally

different symmetries (f invariance) as well as a different

dimensionality [8].
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