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Abstract—The InAs/GaAs structures consisting of quantum-dot layers with electronic properties typical of
two-dimensional systems are investigated. It is found that, at a low concentration of charge carriers, the vari-
able-range-hopping conductivity is observed at low temperatures. The localization length corresponds to char-
acteristic quantum-dot cluster sizes determined using atomic-force microscopy (AFM). The quantum Hall
effect–insulator transition induced by a magnetic field occurs in InAs/GaAs quantum-dot layers with metallic
conductivity. The resistivities at the transition point exceed the resistivities characteristic of electrons in hetero-
structures and quantum wells. This can be explained by the large-scale fluctuations of the potential and, hence,
the electron density. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The quantum Hall effect–insulator transition is a
fundamental phenomenon in the physics of two-dimen-
sional systems [1–5]. At temperatures close to zero,
two-dimensional electrons in a magnetic field perpen-
dicular to the plane of a disordered two-dimensional
gas can occur in three stable states: (i) an insulating
state when the diagonal elements of the conductivity
tensor σxx tends to zero and the diagonal elements of the
resistivity tensor ρxx tends to infinity at T  0; (ii) a
Hall liquid state when σxx  0, ρxx  0, and the Hall
component σxy of the conductivity tensor is quantized,
i.e., σxy = (e2/h)sxy, where sxy is an integer (the integer
quantum Hall effect) or a rational fraction (the frac-
tional quantum Hall effect); and (iii) a Hall insulating
state when σxx  0 and σxy  0 at T  0 but

σxy ∝  ( ), so that ρxy  ρxy(0) ≈ B/ne, where n is
the two-dimensional electron density, B is the magnetic
field induction, and e is the elementary charge. In gen-
eral, the state of a two-dimensional system is deter-
mined primarily by the magnetic field induction and the
degree of disordering in the system [1]. According to
the phase diagram proposed by Kivelson et al. [1] for a
two-dimensional system, an increase in the magnetic
field induction can lead to variations in the conducting
properties, i.e., to metal–insulator transitions, in
slightly disordered systems.

The metal–insulator transitions induced by mag-
netic fields have been studied to sufficient detail in two-
dimensional systems with a high degree of ordering, for
example, in heterojunctions and quantum wells [4–6].

σxx
2
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However, the specific features of this phenomenon in
two-dimensional systems with a high degree of disor-
dering call for further investigation. In particular, it
remains unclear how fluctuations of the potential and
the electron density affect the quantum Hall–insulator
transition in a two-dimensional system in the vicinity of
the localization threshold.

A layer of quantum dots with a high surface density
can be treated as a specific two-dimensional system. In
such a structure, the wave functions of electrons can be
delocalized through the overlap of the wave functions
of electrons localized in adjacent quantum dots. The
degree of disordering depends on the growth conditions
of the structure. Actually, one way to decrease the
spread in the positions and sizes of quantum dots is to
grow these dots on vicinal surfaces of semiconductors
[7, 8].

Structures with quantum-dot layers are new objects
that are particularly suitable for investigation of strong
and weak localizations of charge carriers, hoping con-
ductivity, quantum Hall effect, and metal–insulator
transitions in magnetic fields. Elucidation of the spe-
cific features of charge carrier transfer in InAs/GaAs
quantum-dot layers is of considerable practical impor-
tance, because these systems are widely used in manu-
facturing semiconductor lasers [9], single-electron
transistors, and memory elements [10] of the new gen-
eration.

In this work, we investigated the specific features of
the transport properties and the quantum Hall effect–
insulator transition in InAs quantum-dot layers in the
GaAs matrix.
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2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Samples containing InAs quantum-dot layers were
grown through metalloorganic chemical vapor deposi-
tion under atmospheric pressure (the so-called MOC
hydride epitaxy) at temperatures of 600–650°C. The
growth was performed on a GaAs(001) semi-insulating
substrate misoriented by 3° in the [110] direction with
respect to the (001) plane. This substrate (referred to as
the vicinal substrate) is characterized by the formation
of steps whose height is equal to the thickness of one
GaAs monolayer and width depends on the misorienta-
tion angle. The use of the vicinal surface for the dot
growth makes it possible to obtain dots with a more uni-
form size distribution [7, 8]. In our experiments, we
examined three samples. The structure of the studied
samples consisted of 10 (samples 1, 3) or 12 (sample 2)
stacks, each containing a 0.1-µm-thick GaAs layer and
an InAs quantum-dot layer. This structure was capped
with a GaAs cladding layer 0.1 µm thick. We measured
the sheet conductivity. In n-type samples 1 and 3, the
electron concentrations per layer of quantum dots were
equal to 4.0 × 1010 and 1.9 × 1011 cm–2 and the electron
mobilities were 1000 and 5500 cm2/Vs, respectively. In
p-type sample 2, we additionally prepared a δ-C doping
layer, which was separated from the quantum-dot layer
by a 5-nm-thick GaAs undoped spacer. In this sample,
the hole concentration per layer of quantum dots was
2.7 × 1011 cm–2 and the hole mobility was approxi-
mately equal to 100 cm2/Vs. The charge carrier concen-
trations were determined from the Hall effect at a tem-
perature of 4.2 K. A schematic drawing of the structure
of a p-type sample is given in Fig. 1.

The morphology of the quantum-dot layer was inves-
tigated using a TopoMetrix® TMX-2100 AccurexTM

atomic-force microscope (AFM) operating in a contact
mode in air. In order to visualize the quantum dots, the
cladding layer was subjected to selective etching in a
mixture of a 0.8 M K3[Fe(CN)6] solution in 0.3 M KOH
with water and glycerol in the ratio 1 : 5 : 2. The tech-
nique of AFM observations was described in detail in
[11]. Figure 2 displays the AFM image of the surface of
a quantum-dot layer after etching. Quantum dots with
lateral sizes of ~50 nm, a height of ~1.2 nm, and a sur-
face density NS ≈ 2 × 1010 cm–2 are clearly distinguished
in the AFM image. A histogram of the distribution of
quantum dots over sizes L at the base is depicted in
Fig. 3a. The probability density of the radial distribu-
tion W(r) of quantum-dot clusters is presented in
Fig. 3b. The probability dP(r, ∆r) of finding a cluster in
the ring (r, r + ∆r) is defined by the equation dP(r, ∆r) =
2πrW(r)∆r.

The magnetotransport measurements were per-
formed using a standard method in the temperature
range 1.35–4.2 K at a current of 1–2 µA along the quan-
tum-dot layers. The Hall resistivity ρxy(B) and the mag-
netoresistivity ρxx(B) were measured in a magnetic field
perpendicular to the quantum-dot layers, i.e., perpen-
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dicular to the current flow (hereafter, all the experimen-
tal resistivities will be given per layer of quantum dots).
A magnetic field up to 10 T was induced by a supercon-
ducting solenoid. Stronger magnetic fields (up to 40 T)
were generated at the University of Amsterdam with the
use of the pulse method at a freely decaying current.
This provided a means for the generation of quasi-sta-
tionary magnetic fields with a pulse duration of 1–2 s.
The samples were placed in liquid helium in order to
prevent their overheating. The temperature was varied
through evacuation of helium vapors.

3. RESULTS AND DISCUSSION

3.1. Strong Localization of Charge Carriers

In the structures under investigation, the quantum
dots are filled with charge carriers. At a sufficiently
high concentration, the quantum dots can form two-
dimensional electrons that exhibit the Shubnikov–de
Haas and quantum Hall effects [12–15]. A decrease in
the charge carrier concentration does not change the
two-dimensional character of conductivity but can
result in a crossover to hopping conductivity. Figure 4a
shows the temperature dependences of the resistivity
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Fig. 1. Schematic drawing of the structure of the studied
samples.
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Fig. 2. AFM image of a quantum-dot layer after removal of
a cladding layer by selective etching.
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for two n-type samples and one p-type sample. It can be
seen from this figure that, in all cases, the resistivity
passes through a minimum. This indicates that the
resistivity of the studied samples at high temperatures
increases with increasing temperature (as is the case in
metals), whereas the localization effects become pro-
nounced at the liquid-helium temperature. At low tem-
peratures, samples 1 and 2 possess variable-range-hop-
ping conductivity. In this temperature range, the resis-
tivity of samples 1 and 2 obeys the Mott law for two-
dimensional hopping conductivity and can be repre-
sented by the relationship ρ = ρ0exp{(T0/T)1/3} [16].
The low-temperature portions of the temperature
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Fig. 3. (a) Distribution of the number of quantum dots N
over sizes L at the base and (b) the probability density of the
radial distribution W(r) of quantum-dot clusters according
to the AFM data.
PH
dependences of the resistivity for these samples in the
corresponding coordinates are depicted in Fig. 4b. The
parameter T0 is related to the density of states at the
Fermi level  and the localization length a through

the expression T0 = C( )–1, where C = 13.8 is the

numerical coefficient [16]. For sample 2, we have T0 ≈
17 K; hence, it follows that, the localization length a
calculated from the above expression is approximately
equal to 80 nm. This value approximately corresponds
to the probability density W(r) of the radial distribution
of quantum-dot clusters at the maximum (Fig. 3b).
Consequently, as the temperature decreases, the charge
carriers are localized not in single quantum dots but
within an extended potential relief associated with
quantum-dot clusters.

For sample 3 with a sufficiently high electron con-
centration, the temperature dependence of the resistiv-
ity in the low-temperature range is consistent with the
quantum corrections to the two-dimensional conductiv-
ity [17]; i.e., it can be rectified in the R–lnT coordinates.
Moreover, the negative magnetoresistivity is observed
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Fig. 4. (a) Temperature dependences of the resistivity (resis-
tance per square) for (1) n-type sample 1, (2) n-type sample
3, and (3) p-type sample 2. (b) Low-temperature portions of
the temperature dependences of the resistivity for (1) sam-
ple 1 and (2) sample 2.
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in weak magnetic fields. This also corresponds to a
weak two-dimensional localization of electrons.

Figure 5 shows the dependences of the magnetore-
sistivity ρxx(B) of the studied samples at different tem-
peratures. It should be noted that the initial resistivities
of samples 1 and 2 substantially exceed the value of
h/e2 ≈ 25.8 kΩ per square (where h is the Planck con-
stant and e is the elementary charge), which is treated
as a conventional boundary between the metallic and
dielectric states. As the magnetic field increases, the
resistivity ρxx(B) passes through a minimum. The
nature of this minimum will be discussed below. The
sign of the derivative dρxx/dT is considered to be the
main criterion for metallic properties of a system
({dρxx/dT} > 0 for a metal and {dρxx/dT} < 0 for an
insulator) [3]. For samples 1 and 2, the negative deriv-
ative dρxx/dT < 0 takes place over the entire range of
magnetic fields. This result confirms the following
inference drawn above from analyzing the temperature
dependence of the resistivity without a magnetic field:
samples 1 and 2 are characterized by a strong localiza-
tion of charge carriers. The minima observed in the
resistivity are associated with the change in both the
localization length of the wave function of charge car-
riers and the density of states at the Fermi level under
the effect of a magnetic field. In weak magnetic fields,
the localization length of charge carriers increases,
because the magnetic field suppresses interference of
electron waves that experience different sequences of
scattering events in the course of tunneling [18]. As was
shown by Raikh [19], the density of states at the Fermi
level also increases. These two factors are responsible
for the negative magnetoresistivity. Strong magnetic
fields generate an additional localizing potential, which
leads to a decrease in the localization length of the wave
function [16]. An increase in the magnetic field brings
about a decrease in the density of states at the Fermi
level at a filling factor of less than unity due to a shift in
the maximum of the density of states toward the high-
energy range. As a result, there arises positive magne-
toresistivity in strong magnetic fields. The crossover
from the negative to positive magnetoresistivity is
observed in magnetic fields for which the filling factor
is two [4]. For samples 1 and 2, the magnetic fields cor-
responding to this crossover are approximately equal to
2 and 12 T, respectively.

Making allowance for the contraction of the electron
wave function in the magnetic field, we obtain the fol-
lowing relationship between the resistivity ρ and the
magnetic field B: ρ = ρ0exp(B1/2) [16]. The inclusion of
the decrease in the density of states should lead to a
stronger dependence. In our case, the magnetoresistiv-
ity in strong fields can be adequately described by the
expression ρ = ρ0exp(B) (Fig. 5). Note also that the
resistivities of samples 1 and 2 remain larger than h/e2

over the entire range of magnetic fields.
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3.2. The Quantum Hall Effect–Insulator Transition

Sample 3 with a relatively high electron concentra-
tion is characterized by the Shubnikov–de Haas effect,
the quantum Hall effect, and the intersection of the field
dependences of the magnetoresistivity measured at dif-
ferent temperatures (Fig. 6). At the intersection points,
the derivative dρxx/dT changes sign and the quantum
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Fig. 5. Dependences of the magnetoresistivity ρxx (in kΩ
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70

60

50

40

30

20

10

0 2 4 6 8 10

4.2 K
1.7 K

ρxx

ρxy

ρxx, ρxy, kΩ/u

B, T

Fig. 6. Dependences of the magnetoresistivity ρxx and the
Hall resistivity ρxy on the magnetic field for sample 3 at two
temperatures.
3



766 KUL’BACHINSKIŒ et al.
Hall effect–insulator transition occurs. The positive
derivative dρxx/dT > 0 and a plateau in the dependences
of the Hall resistivity ρxy on the magnetic field are
observed in approximately the same fields. These pla-
teaus correspond to filling factors of two and unity.
Note that the quantum Hall plateau is retained after the
intersection of the field dependences of the magnetore-
sistivity measured at two temperatures. On this basis,
the phase formed upon transition was called the quan-
tum Hall insulator [20]. The observed slope of the pla-
teau in our case can be explained by relatively high
temperatures of the measurements.

According to the existing theories of the quantum
Hall effect–insulator transition [1, 5, 21], the resistivity
ρxx at the transition point should be equal to h/e2. How-
ever, the resistivity ρxx for sample 3 upon transition at
B ≈ 9 T from the quantum Hall state with a filling factor
of unity to the insulating state with a zero filling factor
is nearly twice as large as the value of h/e2. This dis-
crepancy can be explained in terms of the specific fea-
tures of the two-dimensional system under consider-
ation. In a quantum-dot layer, the overlap of the wave
functions of electrons localized in different dots gives
rise to two-dimensional electrons. In this case, the dis-
tances between quantum dots and their sizes are distrib-
uted in a random manner. As a result, the density of
two-dimensional electrons in the layer fluctuates on a
typical scale of variation in the size of quantum-dot
clusters (Fig. 3b). Since the characteristic size of the
electron wave function in a quantizing magnetic field is
of the order of the magnetic length l = ("/eB)1/2 ≈ 28 nm
(at the magnetic field induction B = 1 T), which is less
than the cluster size, the energy at the Landau level also
fluctuates in space. In the sample, the current predomi-
nantly flows through regions that have the highest con-
centrations of charge carriers and form a network of
conducting channels. The effective length of the con-
ducting channels can be considerably larger and their
width can be appreciably smaller than those for a spa-
tially homogeneous two-dimensional system. As a con-
sequence, the resistivity of the structure in the quantum
Hall regime can substantially exceed the maximum
resistivity of a two-dimensional metal (h/e2), even
though the temperature dependence of the resistivity
exhibits a metallic behavior.

4. CONCLUSIONS

Thus, it was demonstrated that, in InAs/GaAs struc-
tures with quantum-dot layers, the wave functions of
charge carriers localized in adjacent quantum dots
overlap at low temperatures. As a result, strongly local-
ized two-dimensional charge carriers are generated and
variable-range-hopping conductivity is observed at low
temperatures. The localization length is approximately
equal to 80 nm and agrees well with the characteristic
quantum-dot cluster sizes determined from the AFM
data.
P

At a high concentration of charge carriers, the tem-
perature dependence of the resistivity and the negative
magnetoresistivity in weak magnetic fields correspond
to a weak two-dimensional localization regime. The
Shubnikov–de Haas and quantum Hall effects are
observed in stronger magnetic fields. The quantum Hall
effect–insulator transition occurs in strong magnetic
fields. It was found that the two-dimensional conductiv-
ity in the quantum Hall state at a filling factor of unity
is less than the minimum metallic conductivity. In this
case, the temperature dependence of the resistivity of
the system exhibits metallic behavior. These findings
can be explained by the strong spatial inhomogeneity of
the system, in which the current passes through a net-
work of channels formed by regions with the highest
concentration of two-dimensional electrons.
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